Connect with us

Technology

Google Nest Hub (2nd gen) review: wearable-free sleep tracking smart display | Google

Voice Of EU

Published

on

Google’s second-generation Nest Hub smart display now comes with radar-based sleep tracking as it attempts to keep Amazon’s Alexa at bay.

The new Nest Hub costs £89.99 on launch, which makes it cheaper than its predecessor and slightly undercuts competitors of a similar size.

The second-generation unit has the same design as the original but is ever-so-slightly taller. The 7in LCD screen looks great and is crisp enough for viewing at arm’s length or further, making it perfect for use as a digital photo frame. The body is now made of recycled plastic and the screen is covered in an edgeless glass, which makes it easier to wipe clean.

The display is mounted in a fabric foot that contains a louder speaker with 50% more bass than its predecessor. It sounds better than the Nest Mini, but not as powerful as the Nest Audio or similarly sized speakers.

Google Nest Hub
Tap the air in front of the display to pause the music or wave at an alarm to snooze it. Photograph: Samuel Gibbs/The Guardian

New for the Nest Hub are the ultrasound and Google’s Soli miniature radar sensors, which enable advanced functions without the privacy implications of having a camera. Ultrasound is used to detect when people are near while increasing the size of text when you are further away.

Soli tracks movement for two features. The first is motion sense, which was first introduced on the company’s Pixel 4 phone in 2019 and tracks hand gestures to allow you to pause music, silence alarms and similar. The second is sleep tracking.

Sleep Sense

Google Nest Hub
The display can show a summary of your sleep after you wake or you can see it all in the Google Fit app on Android or iOS. Photograph: Samuel Gibbs/The Guardian

The Nest Hub uses its radar to track the breathing patterns and sleep of the person lying beside it without the need for a wrist or headband. Put it on a bedside table about an arm’s length away and go to bed as normal.

The device records how long you sleep, restless periods and, optionally, how many times you cough or snore using the microphones. The data is processed locally on the Hub using built-in artificial intelligence, but then synced to Google’s long-standing health service, Fit, so you can see your data on your phone. You cannot opt out of syncing the data with Google Fit, but you can delete it or share it with other services.

The display can also show you a summary of how you slept last night or over the last week. The results were surprisingly good, recording similar length of time slept and disturbances to both wrist-based sleep tracking with a Garmin Fenix 6 Pro Solar and a Withings Sleep Analyzer mat underneath the mattress.

Google Nest Hub
Sleep sense only tracks the person immediately in front of the display, not a partner the other side of the bed, and it can’t differentiate between coughs and snores from more than one person. Photograph: Samuel Gibbs/The Guardian

It does not record sleep cycles nor heart rate, which is a key health metric while sleeping, but for a non-contact sleep tracking system that requires no special gear to be worn I was impressed. It can give you tips for better sleep and help you keep a consistent bedtime, suggesting an optimised time after two weeks of tracking.

There is a potential catch, however. Sleep sensing is only in “free preview” until at least the end of the year. The firm says that it is “learning and innovating on this new technology, and also exploring how Sleep Sensing can become a part of the Fitbit and Fitbit Premium experiences” after Google’s recent purchase of the fitness tracker maker. That means Google could start to charge for some or all of the sleep-tracking feature, as it does for the advanced sleep-tracking analysis within its Fitbit Premium subscription.

Google Nest Hub
You can set ad hoc or repeating alarms, but be warned there’s no battery backup so if the power is out when the alarm should sound it won’t wake you up. Photograph: Samuel Gibbs/The Guardian

The Nest Hub can do so-called sunrise alarms. Here the display gradually lights up through warm colours simulating a sunrise for a period immediately before an audible alarm to gently wake you up. It works well if you happen to sleep facing it in a dark room, but will struggle otherwise. The Nest Hub can light up third-party smart lights too for a greater effect.

Plus all the usual smart display features

Google Nest Hub
An ambient light sensor at the top adjusts the brightness and colour of the screen so that photos look true-to-life while a swipe-up quick settings panel can turn things on and off. Photograph: Samuel Gibbs/The Guardian

The Nest Hub can do all of the usual smart assistant things too. It can show you recipes, searches, set timers and alarms, control a large variety of third-party smart home devices and even stream a live feed from compatible smart cameras such as Google’s Nest Hello doorbell.

It plays music and radio including BBC stations, Spotify and via Bluetooth, and can be grouped with other Google speakers for multiroom audio. You can cast video to the display like you would to a TV or Chromecast from most media apps, or play video from Netflix, Disney+ and YouTube directly. The 7in screen is only really big enough for short things or watching TV while doing something else, such as cooking.

It will also play the news, show the weather and personal information such as calendar events, your commute and other things synced with your Google account. Google Assistant can recognise an individual’s voice to give them personalised information such as their calendar or music from their Spotify. You can even do voice calls via Google Duo, but not video calls as it lacks a camera.

Google Nest Hub
There’s a physical mute switch for the three microphones on the back, plus volume buttons on the side. Photograph: Samuel Gibbs/The Guardian

Sustainability

The Nest Hub is generally repairable. The casing is made of 54% recycled post-consumer plastic, part of Google’s commitment to include recycled materials in all its products launching from 2022. The company publishes environmental impact reports for some of its products, but has yet to publish one for the updated Nest Hub. Google will recycle devices free of charge.

Observations

  • It has a Thread radio built in, which will be enabled at a later date for connecting to the next generation of new smart home devices that are in development by various manufacturers.

  • You can quickly delete your sleep data from the display for up to two hours after waking up and can pause sleep tracking with a quick-settings button.

  • The interface is generally fast enough, if not exactly snappy, but it can be a bit sluggish to respond when streaming video from a smart camera.

  • Initial setup of the Nest Hub is done through the Google Home app on Android or iPhone, and takes less than five minutes.

Price

The second-generation Google Nest Hub costs £89.99.

For comparison, the Google Nest Hub Max costs £189, the Lenovo Smart Clock costs £34.99, Amazon Echo Show 5 costs £79.99, the Echo Show 8 costs £99.99 and the Echo Show 10 costs £239.99.

Verdict

The second-generation Google Nest Hub offers quite a few features squeezed into a compact and easy-to-live-with device.

It is very similar to the first generation but the addition of radar for gestures and sleep tracking is useful. It might not record heart rate or your sleep cycle, but provides simple sleep tracking without the faff of having to wear or charge anything. Whether or not you want a Google sleep-tracking device in your bedroom is another matter.

The speaker is better, but not as good as larger smart speakers. Google Assistant is the smartest voice assistant of the bunch and the little 7in display is one of the best digital photo frames you can buy, but it can be a little sluggish here and there.

It is slightly cheaper than similar competitors, and will probably be discounted fairly soon. Meanwhile the first-generation Nest Hub is being flogged at £60 or less.

Pros: sleep tracking without bracelet or headband, good screen, decent speaker, Google Assistant, hand gestures, Cast support for video and music, BBC radio, recycled plastic, no camera for privacy concerns.

Cons: 7in screen a bit small for video, can be a bit slow at times, no camera for video chat.

Other reviews

Source link

Technology

Is your smartphone ruining your memory? A special report on the rise of ‘digital amnesia’ | Memory

Voice Of EU

Published

on

Last week, I missed a real-life meeting because I hadn’t set a reminder on my smartphone, leaving someone I’d never met before alone in a café. But on the same day, I remembered the name of the actor who played Will Smith’s aunt in The Fresh Prince of Bel-Air in 1991 (Janet Hubert). Memory is weird, unpredictable and, neuroscientifically, not yet entirely understood. When memory lapses like mine happen (which they do, a lot), it feels both easy and logical to blame the technology we’ve so recently adopted. Does having more memory in our pockets mean there’s less in our heads? Am I losing my ability to remember things – from appointments to what I was about to do next – because I expect my phone to do it for me? Before smartphones, our heads would have held a cache of phone numbers and our memories would contain a cognitive map, built up over time, which would allow us to navigate – for smartphone users, that is no longer true.

Our brains and our smartphones form a complex web of interactions: the smartphonification of life has been rising since the mid 2000s, but was accelerated by the pandemic, as was internet use in general. Prolonged periods of stress, isolation and exhaustion – common themes since March 2020 – are well known for their impact on memory. Of those surveyed by memory researcher Catherine Loveday in 2021, 80% felt that their memories were worse than before the pandemic. We are – still – shattered, not just by Covid-19, but also by the miserable national and global news cycle. Many of us self-soothe with distractions like social media. Meanwhile, endless scrolling can, at times, create its own distress, and phone notifications and self interrupting to check for them, also seem to affect what, how and if we remember.

So what happens when we outsource part of our memory to an external device? Does it enable us to squeeze more and more out of life, because we aren’t as reliant on our fallible brains to cue things up for us? Are we so reliant on smartphones that they will ultimately change how our memories work (sometimes called digital amnesia)? Or do we just occasionally miss stuff when we don’t remember the reminders?

Neuroscientists are divided. Chris Bird is professor of cognitive neuroscience in the School of Psychology at the University of Sussex and runs research by the Episodic Memory Group. “We have always offloaded things into external devices, like writing down notes, and that’s enabled us to have more complex lives,” he says. “I don’t have a problem with using external devices to augment our thought processes or memory processes. We’re doing it more, but that frees up time to concentrate, focus on and remember other things.” He thinks that the kind of things we use our phones to remember are, for most human brains, difficult to remember. “I take a photo of my parking ticket so I know when it runs out, because it’s an arbitrary thing to remember. Our brains aren’t evolved to remember highly specific, one-off things. Before we had devices, you would have to make a quite an effort to remember the time you needed to be back at your car.”

Professor Oliver Hardt, who studies the neurobiology of memory and forgetting at McGill University in Montreal, is much more cautious. “Once you stop using your memory it will get worse, which makes you use your devices even more,” he says. “We use them for everything. If you go to a website for a recipe, you press a button and it sends the ingredient list to your smartphone. It’s very convenient, but convenience has a price. It’s good for you to do certain things in your head.”

Hardt is not keen on our reliance on GPS. “We can predict that prolonged use of GPS likely will reduce grey matter density in the hippocampus. Reduced grey matter density in this brain area goes along with a variety of symptoms, such as increased risk for depression and other psychopathologies, but also certain forms of dementia. GPS-based navigational systems don’t require you to form a complex geographic map. Instead, they just tell you orientations, like ‘Turn left at next light.’ These are very simple behavioural responses (here: turn left) at a certain stimulus (here: traffic light). These kinds of spatial behaviours do not engage the hippocampus very much, unlike those spatial strategies that require the knowledge of a geographic map, in which you can locate any point, coming from any direction and which requires [cognitively] complex computations. When exploring the spatial capacities of people who have been using GPS for a very long time, they show impairments in spatial memory abilities that require the hippocampus. Map reading is hard and that’s why we give it away to devices so easily. But hard things are good for you, because they engage cognitive processes and brain structures that have other effects on your general cognitive functioning.”

Hardt doesn’t have data yet, but believes, “the cost of this might be an enormous increase in dementia. The less you use that mind of yours, the less you use the systems that are responsible for complicated things like episodic memories, or cognitive flexibility, the more likely it is to develop dementia. There are studies showing that, for example, it is really hard to get dementia when you are a university professor, and the reason is not that these people are smarter – it’s that until old age, they are habitually engaged in tasks that are very mentally demanding.” (Other scientists disagree – Daniel Schacter, a Harvard psychologist who wrote the seminal Seven Sins Of Memory: How The Mind Forgets and Remembers, thinks effects from things like GPS are “task specific”, only.)

While smartphones can obviously open up whole new vistas of knowledge, they can also drag us away from the present moment, like it’s a beautiful day, unexperienced because you’re head down, WhatsApping a meal or a conversation. When we’re not attending to an experience, we are less likely to recall it properly, and fewer recalled experiences could even limit our capacity to have new ideas and being creative. As the renowned neuroscientist and memory researcher Wendy Suzuki recently put it on the Huberman Lab neuroscience podcast, “If we can’t remember what we’ve done, the information we’ve learned and the events of our lives, it changes us… [The part of the brain which remembers] really defines our personal histories. It defines who we are.”

Catherine Price, science writer and author of How to Break Up With Your Phone, concurs. “What we pay attention to in the moment adds up to our life,” she says. “Our brains cannot multitask. We think we can. But any moment where multitasking seems successful, it’s because one of those tasks was not cognitively demanding, like you can fold laundry and listen to the radio. If you’re paying attention to your phone, you’re not paying attention to anything else. That might seem like a throwaway observation, but it’s actually deeply profound. Because you will only remember the things you pay attention to. If you’re not paying attention, you’re literally not going to have a memory of it to remember.”

The Cambridge neuroscientist Barbara Sahakian has evidence of this, too. “In an experiment in 2010, three different groups had to complete a reading task,” she says. “One group got instant messaging before it started, one got instant messaging during the task, and one got no instant messaging, and then there was a comprehension test. What they found was that the people getting instant messages couldn’t remember what they just read.”

Price is much more worried about what being perpetually distracted by our phones – termed “continual partial attention” by the tech expert Linda Stone – does to our memories than using their simpler functions. “I’m not getting distracted by my address book,” she says. And she doesn’t believe smartphones free us up to do more. “Let’s be real with ourselves: how many of us are using the time afforded us by our banking app to write poetry? We just passively consume crap on Instagram.” Price is from Philadelphia. “What would have happened if Benjamin Franklin had had Twitter? Would he have been on Twitter all the time? Would he have made his inventions and breakthroughs?

“I became really interested in whether the constant distractions caused by our devices might be impacting our ability to actually not just accumulate memories to begin with, but transfer them into long-term storage in a way that might impede our ability to think deep and interesting thoughts,” she says. “One of the things that impedes our brain’s ability to transfer memories from short- to long-term storage is distraction. If you get distracted in the middle of it” – by a notification, or by the overwhelming urge to pick up your phone – “you’re not actually going to have the physical changes take place that are required to store that memory.”

It’s impossible to know for sure, because no one measured our level of intellectual creativity before smartphones took off, but Price thinks smartphone over-use could be harming our ability to be insightful. “An insight is being able to connect two disparate things in your mind. But in order to have an insight and be creative, you have to have a lot of raw material in your brain, like you couldn’t cook a recipe if you didn’t have any ingredients: you can’t have an insight if you don’t have the material in your brain, which really is long term memories.” (Her theory was backed by the 92-year-old Nobel prize-winning neuroscientist and biochemist Eric Kandel, who has studied how distraction affects memory – Price bumped into him on a train and grilled him about her idea. “I’ve got a selfie of me with a giant grin and Eric looking a bit confused.”) Psychologist professor Larry Rosen, co-author (with neuroscientist Adam Gazzaley) of The Distracted Mind: Ancient Brains in a High-Tech World, also agrees: “Constant distractions make it difficult to encode information in memory.”

Smartphones are, of course, made to hijack our attention. “The apps that make money by taking our attention are designed to interrupt us,” says Price. “I think of notifications as interruptions because that’s what they’re doing.”

For Oliver Hardt, phones exploit our biology. “A human is a very vulnerable animal and the only reason we are not extinct is that we have a superior brain: to avoid predation and find food, we have had to be really good at being attentive to our environment. Our attention can shift rapidly around and when it does, everything else that was being attended to stops, which is why we can’t multitask. When we focus on something, it’s a survival mechanism: you’re in the savannah or the jungle and you hear a branch cracking, you give your total attention to that – which is useful, it causes a short stress reaction, a slight arousal, and activates the sympathetic nervous system. It optimises your cognitive abilities and sets the body up for fighting or flighting.” But it’s much less useful now. “Now, 30,000 years later, we’re here with that exact brain” and every phone notification we hear is a twig snapping in the forest, “simulating what was important to what we were: a frightened little animal.”

Smartphone use can even change the brain, according to the ongoing ABCD study which is tracking over 10,000 American children through to adulthood. “It started by examining 10-year-olds both with paper and pencil measures and an MRI, and one of their most interesting early results was that there was a relationship between tech use and cortical thinning,” says Larry Rosen, who studies social media, technology and the brain. “Young children who use more tech had a thinner cortex, which is supposed to happen at an older age.” Cortical thinning is a normal part of growing up and then ageing, and in much later life can be associated with degenerative diseases such as Parkinson’s and Alzheimer’s, as well as migraines.

Obviously, the smartphone genie is out of the bottle and has run over the hills and far away. We need our smartphones to access offices, attend events, pay for travel and to function as tickets, passes and credit cards, as well as for emails, calls and messages. It’s very hard not to have one. If we’re worried about what they – or the apps on them – might be doing to our memories, what should we do?

Rosen discusses a number of tactics in his book. “My favourites are tech breaks,” he says, “where you start by doing whatever on your devices for one minute and then set an alarm for 15 minutes time. Silence your phone and place it upside down, but within your view as a stimulus to tell your brain that you will have another one-minute tech break after the 15-minute alarm. Continue until you adapt to 15 minutes focus time and then increase to 20. If you can get to 60 minutes of focus time with short tech breaks before and after, that’s a success.”

“If you think your memory and focus have got worse and you’re blaming things like your age, your job, or your kids, that might be true, but it’s also very likely due to the way you’re interacting with your devices,” says Price, who founded Screen/Life Balance to help people manage their phone use. As a science writer, she’s “very much into randomly controlled trials, but with phones, it’s actually more of a qualitative question about personally how it’s impacting you. And it’s really easy to do your own experiment and see if it makes a difference. It’s great to have scientific evidence. But we can also intuitively know: if you practice keeping your phone away more and you notice that you feel calmer and you’re remembering more, then you’ve answered your own question.”

Source link

Continue Reading

Technology

China rallies support for Kylin Linux in war on Windows • The Register

Voice Of EU

Published

on

China’s efforts to end its reliance on Microsoft Windows got a boost with the launch of the openKylin project.

The initiative aims to accelerate development of the country’s home-grown Kylin Linux distro by opening the project up to a broader community of developers, colleges, and universities to contribute code.

Launched in 2001, Kylin was based on a FreeBSD kernel and was intended for use in government and military offices, where Chinese authorities have repeatedly attempted to eliminate foreign operating systems.

In 2010, the operating system made the switch to the Linux kernel, and in 2014 an Ubuntu-based version of the OS was introduced after Canonical reached an agreement with Chinese authorities to develop the software.

The openKylin project appears to be the latest phase of that project, and is focused on version planning, platform development, and establishing a community charter. To date, the project has garnered support from nearly two dozen Chinese firms and institutions, including China’s Advanced Operating System Innovation Center.

These industry partners will contribute to several special interest groups to improve various aspects of the operating system over time. Examples include optimizations for the latest generation of Intel and AMD processors, where available; support for emerging RISC-V CPUs; development of an x86-to-RISC-V translation layer; and improvements to the Ubuntu Kylin User Interface (UKUI) window manager for tablet and convertible devices.

China’s love-hate relationship with Microsoft

China’s efforts to rid itself of Redmond are by no means new. As far back as 2000, Chinese authorities ordered government offices to remove Windows in favor of Red Flag Linux.

However, in the case of Red Flag Linux, those efforts ultimately went nowhere after the project failed to catch on. The org was ultimately dissolved, and the team terminated in 2014. Despite its collapse, the project appears to have been rebooted, with a release slated to launch later this year.

This is a story that would repeat on a regular cadence, fueled by periodic spats between Uncle Sam and software vendors.

It’s safe to say the Chinese government has something of a love-hate relationship with Redmond. In 2013, Chinese authorities urged Microsoft to extend support for Windows XP, on which the country still relied heavily.

However, a year later, the Chinese government banned Windows 8 in much of the public sector, just months after Microsoft ended support for Windows XP.

Today, Microsoft controls roughly 85 percent of the desktop operating system market as of June 2022, according to Statcounter.

Some of this can be attributed to the launch of Windows 10 China Government Edition in 2017, which was developed in collaboration with the China Electronics Technology Group.

It doesn’t appear those efforts bought Microsoft’s American partners much in terms of goodwill, with Chinese authorities directing government agencies to throw out all foreign-made personal computers this spring. ®

Source link

Continue Reading

Technology

EU-backed project to trial uncrewed flight ecosystem in Shannon

Voice Of EU

Published

on

The Shannon-based project aims to integrate the operations of uncrewed and conventional aircraft to modernise air traffic management in Europe.

A European consortium based in Shannon has received EU funding to develop a flight ecosystem for drones and help integrate uncrewed aircraft into our airspace.

Coordinated by Future Mobility Campus Ireland (FMCI), this consortium will conduct a three-year engineering project to develop, deploy and optimise this type of system in Europe.

Describing itself as Ireland’s “first testbed for future mobility”, FMCI is a development centre based in the Shannon Free Zone focused on innovation in both ground and air mobility tech.

Illustration of an unmanned vehicle testing site, with drones visible. A landing and take off zone is highlighted, along with a mobile operations unit where a van is parked. A small building is labelled as the AAM operations centre.

Illustration of the Advanced Aerial Mobility Hub at FMCI. Image: FMCI

FMCI said the research project, known as EALU-AER, represents a “major vote of confidence” in Ireland’s local expertise, industry operators and the resourcing of air mobility development.

Other members of the consortium include Shannon Group, the Irish Aviation Authority, Collins Aerospace, Dublin-based Avtrain, and Deep Blue in Italy.

The consortium has received the three-year funding award to develop uncrewed aviation business opportunities in Ireland, as part of a collaborative research project that could help modernise air traffic management in Europe.

The consortium said the new funding will help build an end-to-end ecosystem that supports the safe operation of uncrewed flights. The goal is to help integrate the operations of both uncrewed and conventional aircraft.

“This will result in developing and building out the critical infrastructure to allow advanced air mobility proliferate across Europe,” FMCI CEO Russell Vickers said.

“It will secure access to airspace for large numbers of drones and eVTOL [electric vertical take-off and landing] aircraft, resulting in safe, cost-effective and sustainable transport of freight and people in the future.”

The project’s work will be based at FMCI’s Advanced Aerial Mobility Research Test and Development Facilities in Shannon, but will include a network of Advanced Air Mobility routes across Ireland.

FMCI has already worked with Avtrain and Shannon Group to trial freight delivery services using beyond visual line of sight (BVLOS) drones.

“We are entering a new era of innovation where the success of the industry will depend on the integration of uncrewed aircraft into our airspace, rather than the segregation of airspace,” Avtrain CEO Julie Garland said.

Funding for the project came from the SESAR 3 Joint Undertaking, which is partnership of private and public sector entities in the EU that aim to accelerate the delivery of the Digital European Sky through research and innovation.

It comes as people are increasingly looking at the potential of drones and uncrewed flight technology. A Dublin City Council initiative recently looked to show how local government can utilise drones in areas such as civil defence, emergency response, public safety and environmental monitoring.

10 things you need to know direct to your inbox every weekday. Sign up for the Daily Brief, Silicon Republic’s digest of essential sci-tech news.

Source link

Continue Reading

Trending

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates 
directly on your inbox.

You have Successfully Subscribed!