Connect with us

Technology

How data could save Earth from climate change | Climate change

Voice Of EU

Published

on

As monikers go, Subak may seem an odd choice for a new organisation that aims to accelerate hi-tech efforts to combat the climate crisis. The name is Indonesian, it transpires, and refers to an ancient agricultural system that allows farmers to co-ordinate their efforts when irrigating and growing crops.

“Subak allows farmers to carefully synchronise their use of water and so maximise rice production,” said Bryony Worthington, founder and board member of the new, not-for-profit climate action group. “And that is exactly what we are going to do – with data. By sharing and channelling data, we can maximise our efforts to combat carbon emissions and global warming. Data is going to be the new water, in other words.”

Bryony Worthington & Gi Fernando
Bryony Worthington and Gi Fernando, who hatched the idea of Subak. Photograph: Supplied

Subak will be officially launched on Monday and will select and fund non-profit groups, working around the world, to combat the climate crisis. Early start-ups already helped by Subak include one group that is assisting UK local authorities to boost electric car use, while another is using accurate weather forecasts to make best use of solar power across Britain and limit fossil fuel burning to generate electricity.

These efforts are being launched after a week of headlines that have highlighted how perilous life on Earth is becoming as global heating grips the planet. Floods in Germany and Belgium left more than 150 dead; scientists revealed that the Brazilian rainforest now emits more carbon dioxide than it absorbs; and fires devastated vast tracts of Californian forests. In each case, scientists warned that rising temperatures – triggered by increasing levels of carbon dioxide in the atmosphere – are likely to have played a key role in bringing about these catastrophes.

Urgent action is clearly needed, says Lady Worthington, a noted climate activist and lead author of the team which drafted the UK’s 2008 Climate Change Act, legislation that required the UK to reduce its carbon emissions by at least 80% of their 1990 levels. At the time, Worthington was working with Friends of the Earth but was seconded to government to help design the legislation. For her efforts, she was made a peer in 2010.

Floods in Liege, Belgium, on Thursday.
Floods in Liege, Belgium, on Thursday. Photograph: Bruno Fahy/Belga/AFP/Getty Images

Since then, Worthington has continued in the battle against the climate crisis, and in 2019 she read Harvard academic Shoshana Zuboff’s book The Age of Surveillance Capitalism ,which focuses – disapprovingly – on hi-tech companies’ growing use of personal data to make money.

“It woke me up to the fact a whole new world of digital tools was being deployed to generate profits,” says Worthington. “I realised it would be better if those tools could be used to save the planet – to protect the global commons – and not merely to boost share value.”

Worthington contacted Gi Fernando, a tech entrepreneur, and the pair hatched the idea of Subak, which has since been given funding by the Quadrature Climate Foundation (QCF) that was recently set up by the London investment management company, Quadrature Capital. Its aim is to provide initial funding to help groups establish themselves but also to give expert guidance over legal, management and other issues.

“When you start up a company or group, you are quite alone,” says Fernando. “So if you have a community around you that can offer help – HR, finance, tools – that is incredibly helpful. And then, once that group gets on their feet, they can then start to help other startup entrepreneurs wanting to open new avenues in order to help fight climate change.”

Fernando’s words are echoed by several of the groups that Subak has already helped to set up, such as Open Climate Fix. This aims to reduce carbon emissions by improving weather forecasts to make the best use of solar power plants – whose effectiveness is reduced when the weather is cloudy.

Doyle, a small town in California, was ravaged last week by wildfire for the second time in less than a year.
Doyle, a small town in California, was ravaged last week by wildfire for the second time in less than a year. Photograph: Noah Berger/AP

“If we get very good data about forthcoming cloud cover, we will know exactly how much solar-generated electricity can be provided in the UK on a given day,” said Open Climate Fix’s co-founder, Jack Kelly. “That will mean we will not need to generate unnecessary electricity from other sources – in particular fossil fuel sources such as gas – because we have underestimated the solar power we will get that day. That will help to reduce carbon emissions.”

Subak’s provision of engineers and software experts who have turned weather satellite images into cloud cover forecasts was a critical piece of assistance, added Kelly.

A similar tale is told by Richard Allan of New AutoMotive, which is monitoring how electric cars are being taken up in communities across the UK. Factors include vehicle use, sales patterns and favourite types of cars and trucks. That data can be fed to local authorities to ensure charging stations, battery replacement services and other resources are provided to maximise take-up of electric cars.

“Replacing petrol and diesel vehicles with electric versions as quickly as possible is going to be extremely important in reducing carbon emissions,” says Allan. “And data about take-up rates in communities will be vital in achieving that goal.”

This view is endorsed by Worthington. “Just as a major corporation has lots of different companies under its control, Subak is going to help set up lots of new outfits, each aimed at boosting efforts to control climate change.

“We are going to be the Diageo of climate protection, though we will not be co-ordinating drink production. We will be generating precious data about the climate.”

Climate crisis in numbers

415: The number of parts per million of carbon dioxide that make up the atmosphere. Before the Industrial Revolution in the mid-1700s, the global average amount of carbon dioxide was about 280ppm. Burning fossil fuels has since added a further 135ppm and if global energy demand continues to grow and is met mostly with fossil fuels, that figure could exceed 900ppm by 2100.

3.6mm: The estimated increase each year in sea level, according to measurements of tide gauges and satellite data. This is a result of human-induced warming of the planet. It is projected that the sea level will rise a further 40 to 80cm by 2100, although future ice sheet melt could make these values considerably higher.

43.1 billion: In 2019 that was the number of tons of carbon dioxide from human activities that were emitted into the atmosphere. Carbon dioxide is a greenhouse gas that absorbs heat and release it gradually over time, like bricks in a fireplace after the fire goes out. Current increases in greenhouse gases have tipped the Earth’s energy budget out of balance, trapping additional heat and raising Earth’s average temperature.

28 trillion: The estimated numbers of tons of ice that our planet has lost between 1994 and 2017. Global warming has a particularly severe impact at higher latitudes and this has been most noticeable in the Arctic. Scientists worry that as ice melts, less solar radiation will be reflected back into space and temperatures will rise even faster. Ice loss will become increasingly severe as a result.

Sources: Royal Society; US National Oceanic and Atmospheric Administration; Scientific American

Source link

Technology

Is your smartphone ruining your memory? A special report on the rise of ‘digital amnesia’ | Memory

Voice Of EU

Published

on

Last week, I missed a real-life meeting because I hadn’t set a reminder on my smartphone, leaving someone I’d never met before alone in a café. But on the same day, I remembered the name of the actor who played Will Smith’s aunt in The Fresh Prince of Bel-Air in 1991 (Janet Hubert). Memory is weird, unpredictable and, neuroscientifically, not yet entirely understood. When memory lapses like mine happen (which they do, a lot), it feels both easy and logical to blame the technology we’ve so recently adopted. Does having more memory in our pockets mean there’s less in our heads? Am I losing my ability to remember things – from appointments to what I was about to do next – because I expect my phone to do it for me? Before smartphones, our heads would have held a cache of phone numbers and our memories would contain a cognitive map, built up over time, which would allow us to navigate – for smartphone users, that is no longer true.

Our brains and our smartphones form a complex web of interactions: the smartphonification of life has been rising since the mid 2000s, but was accelerated by the pandemic, as was internet use in general. Prolonged periods of stress, isolation and exhaustion – common themes since March 2020 – are well known for their impact on memory. Of those surveyed by memory researcher Catherine Loveday in 2021, 80% felt that their memories were worse than before the pandemic. We are – still – shattered, not just by Covid-19, but also by the miserable national and global news cycle. Many of us self-soothe with distractions like social media. Meanwhile, endless scrolling can, at times, create its own distress, and phone notifications and self interrupting to check for them, also seem to affect what, how and if we remember.

So what happens when we outsource part of our memory to an external device? Does it enable us to squeeze more and more out of life, because we aren’t as reliant on our fallible brains to cue things up for us? Are we so reliant on smartphones that they will ultimately change how our memories work (sometimes called digital amnesia)? Or do we just occasionally miss stuff when we don’t remember the reminders?

Neuroscientists are divided. Chris Bird is professor of cognitive neuroscience in the School of Psychology at the University of Sussex and runs research by the Episodic Memory Group. “We have always offloaded things into external devices, like writing down notes, and that’s enabled us to have more complex lives,” he says. “I don’t have a problem with using external devices to augment our thought processes or memory processes. We’re doing it more, but that frees up time to concentrate, focus on and remember other things.” He thinks that the kind of things we use our phones to remember are, for most human brains, difficult to remember. “I take a photo of my parking ticket so I know when it runs out, because it’s an arbitrary thing to remember. Our brains aren’t evolved to remember highly specific, one-off things. Before we had devices, you would have to make a quite an effort to remember the time you needed to be back at your car.”

Professor Oliver Hardt, who studies the neurobiology of memory and forgetting at McGill University in Montreal, is much more cautious. “Once you stop using your memory it will get worse, which makes you use your devices even more,” he says. “We use them for everything. If you go to a website for a recipe, you press a button and it sends the ingredient list to your smartphone. It’s very convenient, but convenience has a price. It’s good for you to do certain things in your head.”

Hardt is not keen on our reliance on GPS. “We can predict that prolonged use of GPS likely will reduce grey matter density in the hippocampus. Reduced grey matter density in this brain area goes along with a variety of symptoms, such as increased risk for depression and other psychopathologies, but also certain forms of dementia. GPS-based navigational systems don’t require you to form a complex geographic map. Instead, they just tell you orientations, like ‘Turn left at next light.’ These are very simple behavioural responses (here: turn left) at a certain stimulus (here: traffic light). These kinds of spatial behaviours do not engage the hippocampus very much, unlike those spatial strategies that require the knowledge of a geographic map, in which you can locate any point, coming from any direction and which requires [cognitively] complex computations. When exploring the spatial capacities of people who have been using GPS for a very long time, they show impairments in spatial memory abilities that require the hippocampus. Map reading is hard and that’s why we give it away to devices so easily. But hard things are good for you, because they engage cognitive processes and brain structures that have other effects on your general cognitive functioning.”

Hardt doesn’t have data yet, but believes, “the cost of this might be an enormous increase in dementia. The less you use that mind of yours, the less you use the systems that are responsible for complicated things like episodic memories, or cognitive flexibility, the more likely it is to develop dementia. There are studies showing that, for example, it is really hard to get dementia when you are a university professor, and the reason is not that these people are smarter – it’s that until old age, they are habitually engaged in tasks that are very mentally demanding.” (Other scientists disagree – Daniel Schacter, a Harvard psychologist who wrote the seminal Seven Sins Of Memory: How The Mind Forgets and Remembers, thinks effects from things like GPS are “task specific”, only.)

While smartphones can obviously open up whole new vistas of knowledge, they can also drag us away from the present moment, like it’s a beautiful day, unexperienced because you’re head down, WhatsApping a meal or a conversation. When we’re not attending to an experience, we are less likely to recall it properly, and fewer recalled experiences could even limit our capacity to have new ideas and being creative. As the renowned neuroscientist and memory researcher Wendy Suzuki recently put it on the Huberman Lab neuroscience podcast, “If we can’t remember what we’ve done, the information we’ve learned and the events of our lives, it changes us… [The part of the brain which remembers] really defines our personal histories. It defines who we are.”

Catherine Price, science writer and author of How to Break Up With Your Phone, concurs. “What we pay attention to in the moment adds up to our life,” she says. “Our brains cannot multitask. We think we can. But any moment where multitasking seems successful, it’s because one of those tasks was not cognitively demanding, like you can fold laundry and listen to the radio. If you’re paying attention to your phone, you’re not paying attention to anything else. That might seem like a throwaway observation, but it’s actually deeply profound. Because you will only remember the things you pay attention to. If you’re not paying attention, you’re literally not going to have a memory of it to remember.”

The Cambridge neuroscientist Barbara Sahakian has evidence of this, too. “In an experiment in 2010, three different groups had to complete a reading task,” she says. “One group got instant messaging before it started, one got instant messaging during the task, and one got no instant messaging, and then there was a comprehension test. What they found was that the people getting instant messages couldn’t remember what they just read.”

Price is much more worried about what being perpetually distracted by our phones – termed “continual partial attention” by the tech expert Linda Stone – does to our memories than using their simpler functions. “I’m not getting distracted by my address book,” she says. And she doesn’t believe smartphones free us up to do more. “Let’s be real with ourselves: how many of us are using the time afforded us by our banking app to write poetry? We just passively consume crap on Instagram.” Price is from Philadelphia. “What would have happened if Benjamin Franklin had had Twitter? Would he have been on Twitter all the time? Would he have made his inventions and breakthroughs?

“I became really interested in whether the constant distractions caused by our devices might be impacting our ability to actually not just accumulate memories to begin with, but transfer them into long-term storage in a way that might impede our ability to think deep and interesting thoughts,” she says. “One of the things that impedes our brain’s ability to transfer memories from short- to long-term storage is distraction. If you get distracted in the middle of it” – by a notification, or by the overwhelming urge to pick up your phone – “you’re not actually going to have the physical changes take place that are required to store that memory.”

It’s impossible to know for sure, because no one measured our level of intellectual creativity before smartphones took off, but Price thinks smartphone over-use could be harming our ability to be insightful. “An insight is being able to connect two disparate things in your mind. But in order to have an insight and be creative, you have to have a lot of raw material in your brain, like you couldn’t cook a recipe if you didn’t have any ingredients: you can’t have an insight if you don’t have the material in your brain, which really is long term memories.” (Her theory was backed by the 92-year-old Nobel prize-winning neuroscientist and biochemist Eric Kandel, who has studied how distraction affects memory – Price bumped into him on a train and grilled him about her idea. “I’ve got a selfie of me with a giant grin and Eric looking a bit confused.”) Psychologist professor Larry Rosen, co-author (with neuroscientist Adam Gazzaley) of The Distracted Mind: Ancient Brains in a High-Tech World, also agrees: “Constant distractions make it difficult to encode information in memory.”

Smartphones are, of course, made to hijack our attention. “The apps that make money by taking our attention are designed to interrupt us,” says Price. “I think of notifications as interruptions because that’s what they’re doing.”

For Oliver Hardt, phones exploit our biology. “A human is a very vulnerable animal and the only reason we are not extinct is that we have a superior brain: to avoid predation and find food, we have had to be really good at being attentive to our environment. Our attention can shift rapidly around and when it does, everything else that was being attended to stops, which is why we can’t multitask. When we focus on something, it’s a survival mechanism: you’re in the savannah or the jungle and you hear a branch cracking, you give your total attention to that – which is useful, it causes a short stress reaction, a slight arousal, and activates the sympathetic nervous system. It optimises your cognitive abilities and sets the body up for fighting or flighting.” But it’s much less useful now. “Now, 30,000 years later, we’re here with that exact brain” and every phone notification we hear is a twig snapping in the forest, “simulating what was important to what we were: a frightened little animal.”

Smartphone use can even change the brain, according to the ongoing ABCD study which is tracking over 10,000 American children through to adulthood. “It started by examining 10-year-olds both with paper and pencil measures and an MRI, and one of their most interesting early results was that there was a relationship between tech use and cortical thinning,” says Larry Rosen, who studies social media, technology and the brain. “Young children who use more tech had a thinner cortex, which is supposed to happen at an older age.” Cortical thinning is a normal part of growing up and then ageing, and in much later life can be associated with degenerative diseases such as Parkinson’s and Alzheimer’s, as well as migraines.

Obviously, the smartphone genie is out of the bottle and has run over the hills and far away. We need our smartphones to access offices, attend events, pay for travel and to function as tickets, passes and credit cards, as well as for emails, calls and messages. It’s very hard not to have one. If we’re worried about what they – or the apps on them – might be doing to our memories, what should we do?

Rosen discusses a number of tactics in his book. “My favourites are tech breaks,” he says, “where you start by doing whatever on your devices for one minute and then set an alarm for 15 minutes time. Silence your phone and place it upside down, but within your view as a stimulus to tell your brain that you will have another one-minute tech break after the 15-minute alarm. Continue until you adapt to 15 minutes focus time and then increase to 20. If you can get to 60 minutes of focus time with short tech breaks before and after, that’s a success.”

“If you think your memory and focus have got worse and you’re blaming things like your age, your job, or your kids, that might be true, but it’s also very likely due to the way you’re interacting with your devices,” says Price, who founded Screen/Life Balance to help people manage their phone use. As a science writer, she’s “very much into randomly controlled trials, but with phones, it’s actually more of a qualitative question about personally how it’s impacting you. And it’s really easy to do your own experiment and see if it makes a difference. It’s great to have scientific evidence. But we can also intuitively know: if you practice keeping your phone away more and you notice that you feel calmer and you’re remembering more, then you’ve answered your own question.”

Source link

Continue Reading

Technology

China rallies support for Kylin Linux in war on Windows • The Register

Voice Of EU

Published

on

China’s efforts to end its reliance on Microsoft Windows got a boost with the launch of the openKylin project.

The initiative aims to accelerate development of the country’s home-grown Kylin Linux distro by opening the project up to a broader community of developers, colleges, and universities to contribute code.

Launched in 2001, Kylin was based on a FreeBSD kernel and was intended for use in government and military offices, where Chinese authorities have repeatedly attempted to eliminate foreign operating systems.

In 2010, the operating system made the switch to the Linux kernel, and in 2014 an Ubuntu-based version of the OS was introduced after Canonical reached an agreement with Chinese authorities to develop the software.

The openKylin project appears to be the latest phase of that project, and is focused on version planning, platform development, and establishing a community charter. To date, the project has garnered support from nearly two dozen Chinese firms and institutions, including China’s Advanced Operating System Innovation Center.

These industry partners will contribute to several special interest groups to improve various aspects of the operating system over time. Examples include optimizations for the latest generation of Intel and AMD processors, where available; support for emerging RISC-V CPUs; development of an x86-to-RISC-V translation layer; and improvements to the Ubuntu Kylin User Interface (UKUI) window manager for tablet and convertible devices.

China’s love-hate relationship with Microsoft

China’s efforts to rid itself of Redmond are by no means new. As far back as 2000, Chinese authorities ordered government offices to remove Windows in favor of Red Flag Linux.

However, in the case of Red Flag Linux, those efforts ultimately went nowhere after the project failed to catch on. The org was ultimately dissolved, and the team terminated in 2014. Despite its collapse, the project appears to have been rebooted, with a release slated to launch later this year.

This is a story that would repeat on a regular cadence, fueled by periodic spats between Uncle Sam and software vendors.

It’s safe to say the Chinese government has something of a love-hate relationship with Redmond. In 2013, Chinese authorities urged Microsoft to extend support for Windows XP, on which the country still relied heavily.

However, a year later, the Chinese government banned Windows 8 in much of the public sector, just months after Microsoft ended support for Windows XP.

Today, Microsoft controls roughly 85 percent of the desktop operating system market as of June 2022, according to Statcounter.

Some of this can be attributed to the launch of Windows 10 China Government Edition in 2017, which was developed in collaboration with the China Electronics Technology Group.

It doesn’t appear those efforts bought Microsoft’s American partners much in terms of goodwill, with Chinese authorities directing government agencies to throw out all foreign-made personal computers this spring. ®

Source link

Continue Reading

Technology

EU-backed project to trial uncrewed flight ecosystem in Shannon

Voice Of EU

Published

on

The Shannon-based project aims to integrate the operations of uncrewed and conventional aircraft to modernise air traffic management in Europe.

A European consortium based in Shannon has received EU funding to develop a flight ecosystem for drones and help integrate uncrewed aircraft into our airspace.

Coordinated by Future Mobility Campus Ireland (FMCI), this consortium will conduct a three-year engineering project to develop, deploy and optimise this type of system in Europe.

Describing itself as Ireland’s “first testbed for future mobility”, FMCI is a development centre based in the Shannon Free Zone focused on innovation in both ground and air mobility tech.

Illustration of an unmanned vehicle testing site, with drones visible. A landing and take off zone is highlighted, along with a mobile operations unit where a van is parked. A small building is labelled as the AAM operations centre.

Illustration of the Advanced Aerial Mobility Hub at FMCI. Image: FMCI

FMCI said the research project, known as EALU-AER, represents a “major vote of confidence” in Ireland’s local expertise, industry operators and the resourcing of air mobility development.

Other members of the consortium include Shannon Group, the Irish Aviation Authority, Collins Aerospace, Dublin-based Avtrain, and Deep Blue in Italy.

The consortium has received the three-year funding award to develop uncrewed aviation business opportunities in Ireland, as part of a collaborative research project that could help modernise air traffic management in Europe.

The consortium said the new funding will help build an end-to-end ecosystem that supports the safe operation of uncrewed flights. The goal is to help integrate the operations of both uncrewed and conventional aircraft.

“This will result in developing and building out the critical infrastructure to allow advanced air mobility proliferate across Europe,” FMCI CEO Russell Vickers said.

“It will secure access to airspace for large numbers of drones and eVTOL [electric vertical take-off and landing] aircraft, resulting in safe, cost-effective and sustainable transport of freight and people in the future.”

The project’s work will be based at FMCI’s Advanced Aerial Mobility Research Test and Development Facilities in Shannon, but will include a network of Advanced Air Mobility routes across Ireland.

FMCI has already worked with Avtrain and Shannon Group to trial freight delivery services using beyond visual line of sight (BVLOS) drones.

“We are entering a new era of innovation where the success of the industry will depend on the integration of uncrewed aircraft into our airspace, rather than the segregation of airspace,” Avtrain CEO Julie Garland said.

Funding for the project came from the SESAR 3 Joint Undertaking, which is partnership of private and public sector entities in the EU that aim to accelerate the delivery of the Digital European Sky through research and innovation.

It comes as people are increasingly looking at the potential of drones and uncrewed flight technology. A Dublin City Council initiative recently looked to show how local government can utilise drones in areas such as civil defence, emergency response, public safety and environmental monitoring.

10 things you need to know direct to your inbox every weekday. Sign up for the Daily Brief, Silicon Republic’s digest of essential sci-tech news.

Source link

Continue Reading

Trending

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates 
directly on your inbox.

You have Successfully Subscribed!