Connect with us

Technology

From pollutant to product: the companies making stuff from CO2 | Greenhouse gas emissions

Voice Of EU

Published

on

In a warehouse laboratory in Berkeley, California, Nicholas Flanders stands in front of a shiny metal box about the size of a washing machine. Inside is a stack of metal plates that resemble a club sandwich – only the filling is a black polymer membrane coated with proprietary metal catalyst. “We call the membrane the black leaf,” he says.

Flanders is the co-founder and CEO of Twelve, a startup founded in 2015, which received a $57m funding boost in July. It aims to take air – or, to be more precise, the carbon dioxide (CO2) in it – and transform it into something useful, as plants also do, eliminating damaging emissions in the process. Taking the unwanted gas wreaking havoc on our climate and using only water and renewable electricity, Twelve’s metal box houses a new kind of electrolyser that transforms the CO2 into synthesis gas (syngas), a mix of carbon monoxide and hydrogen that can be made into a range of familiar products usually made from fossil fuels. Oxygen is the only by-product. This August, the pilot scale equipment made the syngas that went into what Flanders claims is the world’s first carbon neutral, fossil-free jet fuel. “This is a new way of moving carbon through our economy without pulling it out of the ground,” he says.

Twelve is one of many companies beginning to make stuff out of CO2, captured either from industrial emissions or directly from the air. High-end goods such as vodka, diamonds and activewear, industrial materials such as concrete, plastic, foam and carbon fibre, and even food, are all beginning to be created using CO2. In addition to jet fuel, which is a partnership with the US air force, Twelve has been using its syngas to explore making parts of car interiors with Mercedes-Benz, laundry detergent ingredients with Tide and sunglasses lenses with Pangaia. Online marketplaces such as Expedition Air and SkyBaron are even springing up to sell consumer goods made with CO2 emissions.

“We are at the very early end of a new carbon tech industry,” says Pat Sapinsley, of the Urban Future Lab at New York University, who oversees a new accelerator programme to help fledgling startups get a foothold. While the industry is still only emerging – most activity is only at bench or pilot scale – it is estimated by the Lab there are now about 350 startups hoping to deliver so-called carbon-to-value. Venture capital investment has sharply risen. This year, over $550m had flowed in by the end of September according to research and consulting firm Cleantech Group; that’s more than in the previous five years put together.

The sector could have the potential to reduce the world’s CO2 emissions by more than 10%, according to analysis by the University of Michigan’s Global CO2 Initiative, which aims to help the sector emerge (fuels and building materials such as concrete and aggregates are considered to hold the biggest CO2 mitigation – and market – potential). That contribution, advocates argue, firmly makes carbon utilisation part of the suite of technologies we are going to need to reach the net zero commitments governments and corporations have been making and which, it is becoming clear, can’t be met by renewable electricity alone. “I don’t see a path to net zero without these kinds of technologies,” says Richard Youngman, CEO of Cleantech Group.

Air Company vodka.
Air Company vodka.

Premium running shoe brand On – which went public this September – realised that if it was going to reach its aggressive net zero targets it would need to rethink its materials. Its vision is now that half of all its shoe bottom foam will be made not from petrochemicals but captured carbon. Last month, it announced plans to team up with US-based startup LanzaTech – an early pioneer of the sector, which uses a patented fermentation process to make ethanol out of waste carbon monoxide collected from factories which would otherwise be burnt to emit CO2 – and chemical manufacturer Borealis, which makes the foam by polymerising ethylene (to which ethanol can be converted). On is hoping to unveil its first pair of shoes made wholly from captured carbon sometime next year (it has separate arrangements to make the shoe uppers). That first pair will cost about $1m to make, says Caspar Coppetti, On’s co-founder and executive co-chairman. It’s a lab endeavour to prove viability – but, eventually, when it scales, he doesn’t expect the shoes to cost much more than a regular pair.

It’s not that CO2 isn’t already used industrially (think carbonated beverages). But those uses either put the gas unchanged back into the atmosphere or, in the case of enhanced oil recovery, where injected CO2 pushes out oil and then remains underground, still perpetuates the extraction of new fossil fuels. What’s different here is that waste CO2 is chemically transformed to make new products. Some, such as building materials, eliminate emissions by locking the carbon away permanently; others, such as jet fuel, prevent new emissions by recycling already emitted carbon. Often grouped with utilisation is CO2 sequestration, which promises to store large amounts of captured CO2 permanently underground, but the two are quite different, as advocates point out. “It’s almost a sin to throw away a valuable resource,” says Volker Sick, a professor of mechanical engineering at the University of Michigan who directs the Global CO2 Initiative. “The beauty of carbon is you can make so many different things.”

New York-based startup Air Company, launched in 2017, is selling CO2-made vodka and perfume, and produced hand sanitiser during the pandemic. Like Twelve, it starts with CO2, water and renewable energy but combines them in its reactor to make alcohols such as ethanol. A litre of vodka removes a pound of CO2, and it may soon even use CO2 captured from the heating systems of Manhattan office buildings (in a collaboration with capture startup CarbonQuest).

A SkyBaron watch featuring a face made from carbon infused concrete
A SkyBaron watch featuring a face made from carbon infused concrete

But, like Twelve, Air Company has jet fuel in its sights – which can also be produced from ethanol. It is a crowded field – others pressing ahead with CO2-made jet fuel include LanzaJet, a spinoff from ethanol maker LanzaTech, and SynHelion, which uses solar energy to transform CO2 to syngas.

Typically, it is small amounts – think litres per hour – of jet fuel being made at this stage, says Ian Hayton, a materials and chemicals analyst at Cleantech Group. But countries are beginning to introduce quotas for sustainable aviation fuels, which could move things forwards. And the advantage of making it from CO2, rather than biomass or waste vegetable oils, is that it uses far less land.

Canadian company CarbonCure, founded in 2012, is one of the pioneers on the building materials side. Backed by investors such as Breakthrough Energy Ventures, Bill Gates’s investment firm, its technology involves injecting CO2 into concrete as it is being mixed. The injected CO2 reacts with the wet concrete and rapidly becomes permanently stored as a mineral, the same one as in limestone. Between 5% and 30% of the concrete is derived from CO2, says co-founder and CEO Robert Niven. CarbonCure’s business model is to license its technology to concrete manufacturers themselves. CarbonCure retrofits their systems, transforming them into carbon tech companies (the CO2 is supplied by waste emission sources in their region). It gives them a green sales advantage, but really what the concrete producers like is the economic benefit, says Niven. It means less cement is needed to make the concrete – most are able to reduce their cement content by about 5% – and the addition of the CO2 also strengthens the final material.

It is hard to imagine that food in the form of protein could be mass produced from CO2, but that is exactly what another subset of carbon tech companies are working on. Some, such as Solar Foods in Finland, and Air Protein in California – which uses the tagline “meat made from air” – intend their products for human consumption, while others, such as UK- and Netherlands-based Deep Branch, are focusing on animal feed ingredients. With inputs typically of CO2, water and renewable electricity along with ammonia and nutrients, their proteins are produced in bioreactors from naturally occurring microbes. The microbes grow and multiply and are then dried out to produce a protein powder with all the essential amino acids. “It is somewhere between dried meat, dried soy and dried carrot,” says Pasi Vainikka, Solar Foods co-founder and CEO, of its product Solein. Admittedly, that doesn’t sound very appetising, but, says Vainikka, the taste comes in the final product and Solein is versatile. It could replace pea and soy protein isolate in processed foods or even be used as a feed for the cultivated meat industry. Treated with heat and pressure, it can be eaten like a tasty slab of steak or tofu. Two kilograms of CO2 makes a kilogram of the product and it has been submitted to food regulators in Europe and the UK for novel food approval.

Proton single-cell protein made by Deep Branch from recycled CO2.
Proton single-cell protein made by Deep Branch from recycled CO2. Photograph: Deep Branch Bio

Yet the field also faces many challenges to come to fruition. First, if the technology is really going to serve the climate, it has to be scaled up for mass production quickly and offer price-competitive products. “There’s no point unless we can deliver on scale,” says Allison Dring, CEO of German startup Made of Air, which is focusing on plastics replacements. Many of the companies have plans for their first commercial facilities – Twelve, for example, which has designed its equipment to be modular so it can easily be added to to increase capacity, a bit like a solar farm, hopes to have its first shipping container-sized plant by next year and predicts significant commercial volume by 2023. But scaling up is capital intensive and takes time.

One specific roadblock is finding customers. The startups need bigger companies to pair up with to buy their CO2-made raw materials, but it can be hard for them to break into established supply chains. A big focus of the startup accelerator programme run out of the Urban Futures Lab, called the C2V Initiative, is on making inter-industry connections but, really, more early movers like On are needed. CarbonCure is proud of the fact that 450 concrete plants have been retrofitted with its technology – accounting for virtually all the carbon utilisation project deployments to date, says Niven – but it is only a tiny fraction of the more than 100,000 concrete plants there are worldwide. “Right now, what we need is partners,” he says.

Another bottleneck to scale may be providing the large and low-cost quantities of CO2 needed. While technologies are certainly established to capture CO2 from industrial sources, it is only done on a minuscule scale at present, experts note. Direct air capture is less technologically developed and more expensive. And infrastructure will be needed to move the CO2 if, for example, it is being captured in a different place from where it is being used.

Massive government intervention and support are required for rapid growth, say advocates – be that by setting a carbon price, through procurement policies in government contracts that require CO2-based alternatives, or by infrastructure investment. “This needs to be exponential growth… and we need policies to support it,” says Peter Styring, an expert in carbon capture and utilisation at the University of Sheffield, who directs its Centre for Carbon Dioxide Utilisation. And while recent US efforts are welcomed – the US infrastructure bill, for example, includes over $8bn for direct air capture and CO2 transportation and storage – “there is space for governments to be braver,” says Cleantech’s Youngman.

More detailed guidelines for carbon accounting might also be needed to aid consumer acceptance. Life cycle analyses for the products need to take the whole of the supply chain into account, but companies can set the boundaries in a way that excludes some processes. “We studied concrete production and, in some cases, it actually was worse than just making regular concrete,” says Sick. Both he and Styring are working on improving how companies might perform their assessments as part of an international effort.

A ring by Aether Diamonds, whose stones are not mined, but made from excess carbon dioxide.
A ring by Aether Diamonds, whose stones are not mined, but made from excess carbon dioxide. Photograph: aetherdiamonds.com

And just how controversial carbon utilisation will be remains an open question. Not everyone is gung-ho. Innovation has a role to play in curbing climate change, says Mike Childs, head of policy at the environmental campaign group Friends of the Earth, but such “wonder technologies” are “unproven” to work at the massive scale envisaged and are therefore a “huge gamble” with both people’s lives and the planet. “We know that driving down emissions at source is the best and cheapest way to limit global heating,” he says, adding that the technology also risks providing political and business leaders with justification to keep burning fossil fuels.

The transition away from fossil fuels is a must, say the advocates of CO2 utilisation. But if we want modern life to go on as normal without sacrifices, we’ll need to find new ways of continuing to produce the goods fossil fuels have given us. This industry, they argue, will not only help mitigate climate change but provide the carbon-based products we will always need. “There’s a lot of ‘climate don’ts’,” says Flanders. “[But] you can actually continue to use products that you like, just made in a better way.”

This article was amended on 5 December 2021. Syngas is short for synthesis gas, not synthetic gas as stated in an earlier version.

Source link

Technology

AI laser probe for prostate cancer enters clinical trials • The Register

Voice Of EU

Published

on

AI software capable of mapping tumor tissue more accurately to help surgeons treat and shrink prostate cancer using a laser-powered needle will soon be tested in real patients during clinical trials.

The National Cancer Institute estimated that approximately 12.6 percent of men will be diagnosed with prostate cancer at some point in their life. The risk for developing the disease rises over time for men over the age of 50. It’s one of the most curable forms of cancer, considering most cases are caught in the early stages due to regular screening tests.

Treatment for prostate cancer varies depending on the severity of the disease. Patients can undergo hormone therapy, chemotherapy, or surgery to remove tissue. Avenda Health, a medical startup founded in 2017, is developing a new type of treatment that is less invasive. The US Food and Drug Administration (FDA) granted an investigational device exemption (IDE) to the company’s invention this week, meaning it can now be used in a clinical study. 

Patients will need to have an MRI scan and a targeted fusion biopsy performed first. The data is processed by Avenda’s AI algorithms in its iQuest software to map where the cancerous cells are located within the prostate. Next, the computer vision-aided model will simulate where best to insert FocalPoint, a probe armed with a laser, to help surgeons treat the patient’s tumor. The heat from the laser gently heats the cancerous cells and kills them with goal of shrinking and removing the whole tumor.

focal_point_iquest_avenda

MRI images where cancer is mapped using iQuest software before and after treatment. Image Credit: Avenda Health

“Historically, prostate cancer treatments of surgery or radiation impacts critical structures like the urethra and nerves which control sexual and urinary function,” Avenda’s CEO and co-founder Shyam Natarajan told The Register. “Our focal laser ablation system, FocalPoint, which is powered by our AI-driven cancer margin software, iQuest, specifically targets tumor tissue and avoids healthy tissue. This means patients no longer lose control over these functions that are so common with traditional treatments, so quality of life is significantly improved.”

The treatment is only effective for men diagnosed with intermediate risk of prostate cancer, a classification that describes tumors being confined within the prostate only. Patients are considered high risk in cases where the cancer has spread beyond the prostate. 

“This is one of the benefits of the iQuest software. Not only can it map the cancer, but it also provides decision support for the physician as they determine the best course of treatment for an individual patient. Not every patient is going to be eligible for focal therapy, and it is important for the physician to distinguish between good focal therapy candidates and not.  iQuest provides useful insights for that decision making process,”  Natarajan said.

Avenda received FDA clearance for its FocalPoint device in 2020. The IDE approval brings the company one step closer to bringing their product to market after clinical trial testing, Brittany Berry-Pusey, co-founder and COO of Avenda, said in a statement. 

“This clinical trial will play a key role in advancing our breakthrough technology to improve prostate cancer care. With no new FDA approvals for the treatment of localized prostate cancer in more than four decades, we look forward to working alongside our clinical sites to collect the data necessary to bring iQuest and FocalPoint to market and into the patient care environment.”

Natarajan told us the company was aiming to begin clinical trials in 2023. ®

Source link

Continue Reading

Technology

US offers $10m reward for info on five Conti ransomware members

Voice Of EU

Published

on

Rewards for Justice shared a photo of someone it claims to be an associate of the ransomware gang and is offering a reward to identify him and four others.

The US Department of State is offering a $10m reward for any information on five malicious cyber actors who are believed to be high-ranking members of the Conti ransomware gang.

The US has been offering rewards for information on this ransomware gang since May, including a $5m reward for any intel that leads to the arrest of anyone conspiring or attempting to participate in a Conti attack.

Yesterday (11 August), the department’s Rewards for Justice programme shared an alleged photo of an associate of the ransomware gang. The department said on Twitter that it is “trying to put a name to the face” and believes the individual is the hacker known as “Target”.

Illustration showing an image of a man with four figures next to it. A reward offer for information on the Conti ransomware gang.

A request for information by the Rewards for Justice programme. Image: US Department of State/Rewards for Justice

Conti, also known as Wizard Spider, has been linked to a group believed to be based near St Petersburg, Russia. The US has labelled it a “Russian government-linked ransomware-as-a-service (RaaS) group”.

The group’s malware is believed to be responsible for more than 1,000 ransomware operations targeting critical infrastructure around the world, from law enforcement agencies to emergency medical services and dispatch centres.

In May 2021, the Conti group was behind the HSE ransomware incident that saw more than 80pc of the IT infrastructure of healthcare services across Ireland impacted. It was said to be the most serious cyberattack ever to hit the State’s critical infrastructure.

The US Department of State previously said the Conti ransomware variant is the “costliest strain of ransomware” ever documented. The FBI estimates that, as of January 2022, there had been more than 1,000 victims of attacks associated with Conti ransomware, with victim payouts exceeding $150m.

When Russia began its invasion of Ukraine earlier this year, the Conti group declared its allegiance to the Russian government. Shortly after, a Ukrainian researcher took the cybersecurity world by storm after publishing more than 60,000 internal messages of the ransomware gang.

Raj Samani, chief scientist at cybersecurity firm Rapid7, said the latest reward offer is just “the tip of the iceberg as enforcement agencies make “considerable strides” through public-private collaboration to hold cybercriminals to account.

“Announcing a reward and revealing the details of Conti members sends a message to would-be criminals that cybercrime is anything but risk-free,” said Samani.

10 things you need to know direct to your inbox every weekday. Sign up for the Daily Brief, Silicon Republic’s digest of essential sci-tech news.



Source link

Continue Reading

Technology

Meditation app Calm sacks one-fifth of staff | Meditation

Voice Of EU

Published

on

The US-based meditation app Calm has laid off 20% of its workforce, becoming the latest US tech startup to announce job cuts.

The firm’s boss, David Ko, said the company, which has now axed about 90 people from its 400-person staff, was “not immune” to the economic climate. “In building out our strategic and financial plan, we revisited the investment thesis behind every project and it became clear that we need to make changes,” he said in a memo to staff.

“I can assure you that this was not an easy decision, but it is especially difficult for a company like ours whose mission is focused on workplace mental health and wellness.”

The Calm app, founded in 2012, offers guided meditation and bedtime stories for people of all ages. It received a surge of downloads triggered by the 2020 Covid lockdowns. By the end of that year, the software company said the app had been downloaded more than 100 million times globally and had amassed over 4 million paying subscribers.

Investors valued the firm, which said it had been profitable since 2016, at $2bn.

In the memo, Ko went on: “We did not come to this decision lightly, but are confident that these changes will help us prioritize the future, focus on growth and become a more efficient organization.”

More than 500 startups have laid off staff this year, according to layoffs.fyi, a website that tracks such announcements.

Source link

Continue Reading

Trending

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates 
directly on your inbox.

You have Successfully Subscribed!