Connect with us

Technology

Excuse me, what just happened? Resilience is tough when your failure is due to a ‘sequence of events that was almost impossible to foresee’

Voice Of EU

Published

on

Feature When designing systems that our businesses will rely on, we do so with resilience in mind.

Twenty-five years ago, technologies like RAID and server mirroring were novel and, in some ways, non-trivial to implement; today this is no longer the case and it is a reflex action to procure multiple servers, LAN switches, firewalls, and the like to build resilient systems.

This does not, of course, guarantee us 100 per cent uptime. The law of Mr Murphy applies from time to time: if your primary firewall suffers a hardware failure, there is a tiny, but non-zero, chance that the secondary will also collapse before you finish replacing the primary.

If you have a power failure, there is a similarly micro-tangible likelihood that the generator you have tested weekly for years will choose this moment to cough stubbornly rather than roaring into life. Unless you are (or, more accurately, the nature of your business is) so risk-averse that you can justify spending on more levels of resilience to reduce the chance of an outage even further (but never, of course, to nothing).

There are occasions, though, where planning for failure becomes hard.

Let us look at a recent example. In July 2020, the main telco in Jersey had a major outage because of a problem with a device providing time service to the organisation’s network. The kicker in this event was that the failed device did not fail in the way we are all used to – by making a “bang” noise and emitting smoke; had it done so, in fact, all would have been well as the secondary unit would have taken over.

Impossible

No, this was a more devious kind of time server which only part-failed. It kept running but started serving times from about 20 years in the past (by no coincidence at all this was the factory default time setting), thus confusing network infrastructure devices and causing traffic to stop flowing.

Customer dissatisfaction was palpable, of course, but as an IT specialist one does have to feel something for the company’s technical team: how many of us would ever consider, as a possible failure case, something that the technical chief described quite correctly as a “sequence of events that was almost impossible to foresee”?

(Incidentally, in a somewhat more good-news story, stepping back a moment to our point about extra layers of resilience, the same company had previously survived three offshore cables being severed… by having a fourth).

Could monitoring tools have been put in place to see issues like this when they happen? Yes, absolutely, but the point is that to do so one would first need to identify the scenarios as something that could happen. In the sense of risk management, this type of failure – very high impact but infinitesimally unlikely – is the worst possible kind for a risk manager. There are theories and books about how one can contemplate and deal with such risks, the best-known of which is probably Nassim Nicholas Taleb’s book The Black Swan, which talks of just this kind of risk, but if you want to try to defend against the unexpected then at the very least you need to sit down with a significant number of people in a highly focused way, preferably with an expert in the field to guide and moderate, and work on identifying such possible “black swan” events.

While the black swan concept is most definitely a thing to bear in mind, there is in fact a far more common problem with systems that we consider resilient – a failure to understand how the resilience works.

One particular installation at a company with an office and two data centres had point-to-point links in a triangle between each premises, and each data centre had an internet connection. The two firewalls, one in each data centre, were configured as a resilient pair, and worked as such for years. One day internet service went down, and investigation showed that the secondary unit had lost track of the primary and had switched itself to become the primary. Having two active primaries caused split traffic flows, and hence an outage.

Predictable

In hindsight, this was completely predictable. The way the primary/secondary relationship was maintained between the devices was for the primary to send a “heartbeat” signal to the secondary every few seconds; if the secondary failed to receive the heartbeat three times, it woke up and acted as a primary. Because the devices were in separate data centres, they were connected through various pieces of technology: a LAN patch cord into a switch, into a fibre transceiver, into a telco fibre, then the same in reverse at the other end.

A fault on any one of those elements could cause the network devices to reconfigure their topology to switch data over the other way around the fibre triangle – with the change causing a network blip sufficiently long to drop three heartbeats. In fact, the only approved configuration for the primary/secondary interconnection was a crossover Ethernet cable from one device to the other: the failover code was written with the assumption that, aside perhaps from a highly unlikely sudden patch cord fault, the primary becoming invisible to the secondary meant that the former had died.

Many of us have come across similar instances, where something we expected to fail over has not done so. It’s equally common, too, to come across instances where the failover works OK but then there are issues with the failback, which can be just as problematic. I recall a global WAN I once worked on where, for whatever reason, failovers from primary to secondary were so quick that you didn’t notice any interruption (the only clue was the alert from the monitoring console) but there was a pause of several seconds when failing back.

In the firewall example, even when connectivity was restored the devices would not re-synch without a reboot: remember, the only supported failure scenario was the primary dying completely, which meant that it was only at boot time that it would check to see which role its partner was playing so it could act accordingly. Until someone turned it off and back on again, there was no chance that the problem would go away.

To make our resilient systems truly resilient, then, we need to do three things.

First, we should give some thought to those “black swan” events. It may be that we cannot afford masses of time and effort to consider such low-probability risks, but at the very least we should take a conscious decision on how much or how little we will do in that respect: risk management is all about reasoning and making conscious decisions like that.

Expertise

Second, if we don’t have the knowledge of the precise way our systems and their failover mechanisms work, we must engage people who do and get the benefit of their expertise and experience… and while we’re at it, we should read the manual: nine times out of ten it will tell us how to configure things, even if it doesn’t explain why.

Finally, though, we need to test things – thoroughly and regularly. In our firewall example all potential failure modes should have been considered: if a failure of one of a handful of components could cause an outage, why not test all of them? And when we test, we need to do it for real: we don’t just test failover in the lab and then install the kit in a production cabinet, we test it once it’s in too.

This may need us to persuade the business that we need downtime – or at least potential downtime to cater for the test being unsuccessful – but if management have any sense, they will be persuadable that an approved outage during a predictable time window with the technical team standing by and watching like hawks is far better than an unexpected but entirely foreseeable outage when something breaks for real and the resilience turns out not to work.

Testing

Oh, and when you test failover and failback, run for several days in a failed-over state if you can: many problems don’t manifest instantly, and you will always learn more in a multi-day failover than in one that lasts only a couple of minutes. Bear in mind also the word “regularly” that I used alongside “thoroughly”. Even if we know there has been no change to a particular component, there may well be some knock-on effect from a change to something else. Something that used to be resilient may have become less resilient or even non-resilient because something else changed and we didn’t realise the implication – so regular resilience testing is absolutely key.

Because if something isn’t resilient, this will generally not be because of some esoteric potential failure mode that is next to impossible to anticipate and/or difficult or impossible to test. Most of the time it will because something went wrong – or something was configured wrongly – in a way you could have emulated in a test. ®

Source link

Technology

UK signs US border deal to share police biometric database • The Register

Voice Of EU

Published

on

The UK has signed up to a US plan for sharing police-held biometric data about citizens with US border officials.

According to a member of the European Parliament’s Committee on Civil Liberties, Justice and Home Affairs (LIBE), the body met “informally” with representatives of the US Department of Homeland Security this week to discuss the plans.

They come under the auspices of the Enhanced Border Security Partnership (EBSP), which is designed to increase the US Department Of Homeland Security’s ability to detect threats through biometric information sharing. Israel signed up to the arrangement in March.

LIBE committee member and Pirate Party MEP Patrick Breyer said that during the meeting last week, the committee discovered that the UK – and three EU member states, though their identities were not revealed – had already signed up to reintroduce US visa requirements which grant access to police biometric databases.

In the UK, the Home Office declined the opportunity to deny it was signing up for the scheme. A spokesperson said: “The UK has a long-standing and close partnership with the USA which includes sharing data for specific purposes. We are in regular discussion with them on new proposals or initiatives to improve public safety and enable legitimate travel.”

Under UK law the police can retain an individual’s DNA profile and fingerprint record for up to three years from the date the samples were taken, even if the individual was arrested but not charged, provided the Biometrics Commissioner agrees. Police can also apply for a two-year extension. The same applies to those charged, but not convicted.

According to reports, the US Enhanced Border Security Partnership (EBSP) initiative will be voluntary initially but is set to become mandatory under the US Visa Waiver Program (VWP), which allows visa-free entry into the United States for up to 90 days, by 2027.

MEP Breyer said that when asked exactly what data the US wanted to tap into, the answer was as much as possible. When asked what would happen at US borders if a traveler was known to the police in participating states, it was said that this would be decided by the US immigration officer on a case-by-case basis.

The DHS program is part of a project to update the visa waiver scheme under which EU members and other European countries enjoy visa-free travel to the US under certain conditions.

Breyer noted: “I expect the EU Commission and also the German government to reject the demand of the US authorities and not allow themselves to be blackmailed.

“If necessary, the visa waiver program must be terminated by Europe as well. Millions of innocent Europeans are listed in police databases and could be exposed to completely disproportionate reactions in the USA.

“The US lacks adequate data and fundamental rights protection. Providing personal data to the US exposes our citizens… to the risk of arbitrary detention and false suspicion, with possible dire consequences, in the course of the US ‘war on terror’. We must protect our citizens from these practices,” Breyer said.

The Register has asked DHS for comment. ®

Source link

Continue Reading

Technology

Google to auto-delete the location history of abortion clinic visits

Voice Of EU

Published

on

Google’s decision follows concerns that law enforcement could use personal data from certain apps against people who have sought abortions illegally.

Tech giant Google has said it will soon auto-delete the data of users’ visits to abortion clinics and other medical sites from their location history.

This followed the US Supreme Court’s recent decision to overturn Roe v Wade, eliminating the constitutional right to an abortion in the country.

Other medical facilities that Google mentioned in its planned location changes include counselling centres, domestic violence shelters, fertility centres, addiction treatment facilities, weight loss clinics and cosmetic surgery clinics.

The tech giant also said location history is off by default and that there are tools such as auto-delete so users can easily get rid of parts or all of their location data.

Google said the location data changes will take effect “in the coming weeks”. The tech giant also shared planned data changes around its fitness apps to protect the privacy of users.

“Fitbit users who have chosen to track their menstrual cycles in the app can currently delete menstruation logs one at a time, and we will be rolling out updates that let users delete multiple logs at once,” said Google senior VP of core systems and experiences Jen Fitzpatrick in a blog post.

Fitzpatrick said the tech giant considers the “privacy and security expectations” of people using its products and that it notifies users when it complies with legal demands for information.

“We remain committed to protecting our users against improper government demands for data, and we will continue to oppose demands that are overly broad or otherwise legally objectionable,” Fitzpatrick said.

Following the decision to overturn Roe v Wade, there have been concerns that law enforcement could use personal data from certain apps against people who have sought abortions illegally.

One type of app where this has been a concern has been period tracking apps. The Stardust app saw a recent surge in popularity in after it claimed to implement end-to-end encryption.

However, the app’s privacy-focused claims appear to be at odds with its practices, while its encryption claims were recently removed from its privacy policy.

10 things you need to know direct to your inbox every weekday. Sign up for the Daily Brief, Silicon Republic’s digest of essential sci-tech news.

Source link

Continue Reading

Technology

Is your smartphone ruining your memory? A special report on the rise of ‘digital amnesia’ | Memory

Voice Of EU

Published

on

Last week, I missed a real-life meeting because I hadn’t set a reminder on my smartphone, leaving someone I’d never met before alone in a café. But on the same day, I remembered the name of the actor who played Will Smith’s aunt in The Fresh Prince of Bel-Air in 1991 (Janet Hubert). Memory is weird, unpredictable and, neuroscientifically, not yet entirely understood. When memory lapses like mine happen (which they do, a lot), it feels both easy and logical to blame the technology we’ve so recently adopted. Does having more memory in our pockets mean there’s less in our heads? Am I losing my ability to remember things – from appointments to what I was about to do next – because I expect my phone to do it for me? Before smartphones, our heads would have held a cache of phone numbers and our memories would contain a cognitive map, built up over time, which would allow us to navigate – for smartphone users, that is no longer true.

Our brains and our smartphones form a complex web of interactions: the smartphonification of life has been rising since the mid 2000s, but was accelerated by the pandemic, as was internet use in general. Prolonged periods of stress, isolation and exhaustion – common themes since March 2020 – are well known for their impact on memory. Of those surveyed by memory researcher Catherine Loveday in 2021, 80% felt that their memories were worse than before the pandemic. We are – still – shattered, not just by Covid-19, but also by the miserable national and global news cycle. Many of us self-soothe with distractions like social media. Meanwhile, endless scrolling can, at times, create its own distress, and phone notifications and self interrupting to check for them, also seem to affect what, how and if we remember.

So what happens when we outsource part of our memory to an external device? Does it enable us to squeeze more and more out of life, because we aren’t as reliant on our fallible brains to cue things up for us? Are we so reliant on smartphones that they will ultimately change how our memories work (sometimes called digital amnesia)? Or do we just occasionally miss stuff when we don’t remember the reminders?

Neuroscientists are divided. Chris Bird is professor of cognitive neuroscience in the School of Psychology at the University of Sussex and runs research by the Episodic Memory Group. “We have always offloaded things into external devices, like writing down notes, and that’s enabled us to have more complex lives,” he says. “I don’t have a problem with using external devices to augment our thought processes or memory processes. We’re doing it more, but that frees up time to concentrate, focus on and remember other things.” He thinks that the kind of things we use our phones to remember are, for most human brains, difficult to remember. “I take a photo of my parking ticket so I know when it runs out, because it’s an arbitrary thing to remember. Our brains aren’t evolved to remember highly specific, one-off things. Before we had devices, you would have to make a quite an effort to remember the time you needed to be back at your car.”

Professor Oliver Hardt, who studies the neurobiology of memory and forgetting at McGill University in Montreal, is much more cautious. “Once you stop using your memory it will get worse, which makes you use your devices even more,” he says. “We use them for everything. If you go to a website for a recipe, you press a button and it sends the ingredient list to your smartphone. It’s very convenient, but convenience has a price. It’s good for you to do certain things in your head.”

Hardt is not keen on our reliance on GPS. “We can predict that prolonged use of GPS likely will reduce grey matter density in the hippocampus. Reduced grey matter density in this brain area goes along with a variety of symptoms, such as increased risk for depression and other psychopathologies, but also certain forms of dementia. GPS-based navigational systems don’t require you to form a complex geographic map. Instead, they just tell you orientations, like ‘Turn left at next light.’ These are very simple behavioural responses (here: turn left) at a certain stimulus (here: traffic light). These kinds of spatial behaviours do not engage the hippocampus very much, unlike those spatial strategies that require the knowledge of a geographic map, in which you can locate any point, coming from any direction and which requires [cognitively] complex computations. When exploring the spatial capacities of people who have been using GPS for a very long time, they show impairments in spatial memory abilities that require the hippocampus. Map reading is hard and that’s why we give it away to devices so easily. But hard things are good for you, because they engage cognitive processes and brain structures that have other effects on your general cognitive functioning.”

Hardt doesn’t have data yet, but believes, “the cost of this might be an enormous increase in dementia. The less you use that mind of yours, the less you use the systems that are responsible for complicated things like episodic memories, or cognitive flexibility, the more likely it is to develop dementia. There are studies showing that, for example, it is really hard to get dementia when you are a university professor, and the reason is not that these people are smarter – it’s that until old age, they are habitually engaged in tasks that are very mentally demanding.” (Other scientists disagree – Daniel Schacter, a Harvard psychologist who wrote the seminal Seven Sins Of Memory: How The Mind Forgets and Remembers, thinks effects from things like GPS are “task specific”, only.)

While smartphones can obviously open up whole new vistas of knowledge, they can also drag us away from the present moment, like it’s a beautiful day, unexperienced because you’re head down, WhatsApping a meal or a conversation. When we’re not attending to an experience, we are less likely to recall it properly, and fewer recalled experiences could even limit our capacity to have new ideas and being creative. As the renowned neuroscientist and memory researcher Wendy Suzuki recently put it on the Huberman Lab neuroscience podcast, “If we can’t remember what we’ve done, the information we’ve learned and the events of our lives, it changes us… [The part of the brain which remembers] really defines our personal histories. It defines who we are.”

Catherine Price, science writer and author of How to Break Up With Your Phone, concurs. “What we pay attention to in the moment adds up to our life,” she says. “Our brains cannot multitask. We think we can. But any moment where multitasking seems successful, it’s because one of those tasks was not cognitively demanding, like you can fold laundry and listen to the radio. If you’re paying attention to your phone, you’re not paying attention to anything else. That might seem like a throwaway observation, but it’s actually deeply profound. Because you will only remember the things you pay attention to. If you’re not paying attention, you’re literally not going to have a memory of it to remember.”

The Cambridge neuroscientist Barbara Sahakian has evidence of this, too. “In an experiment in 2010, three different groups had to complete a reading task,” she says. “One group got instant messaging before it started, one got instant messaging during the task, and one got no instant messaging, and then there was a comprehension test. What they found was that the people getting instant messages couldn’t remember what they just read.”

Price is much more worried about what being perpetually distracted by our phones – termed “continual partial attention” by the tech expert Linda Stone – does to our memories than using their simpler functions. “I’m not getting distracted by my address book,” she says. And she doesn’t believe smartphones free us up to do more. “Let’s be real with ourselves: how many of us are using the time afforded us by our banking app to write poetry? We just passively consume crap on Instagram.” Price is from Philadelphia. “What would have happened if Benjamin Franklin had had Twitter? Would he have been on Twitter all the time? Would he have made his inventions and breakthroughs?

“I became really interested in whether the constant distractions caused by our devices might be impacting our ability to actually not just accumulate memories to begin with, but transfer them into long-term storage in a way that might impede our ability to think deep and interesting thoughts,” she says. “One of the things that impedes our brain’s ability to transfer memories from short- to long-term storage is distraction. If you get distracted in the middle of it” – by a notification, or by the overwhelming urge to pick up your phone – “you’re not actually going to have the physical changes take place that are required to store that memory.”

It’s impossible to know for sure, because no one measured our level of intellectual creativity before smartphones took off, but Price thinks smartphone over-use could be harming our ability to be insightful. “An insight is being able to connect two disparate things in your mind. But in order to have an insight and be creative, you have to have a lot of raw material in your brain, like you couldn’t cook a recipe if you didn’t have any ingredients: you can’t have an insight if you don’t have the material in your brain, which really is long term memories.” (Her theory was backed by the 92-year-old Nobel prize-winning neuroscientist and biochemist Eric Kandel, who has studied how distraction affects memory – Price bumped into him on a train and grilled him about her idea. “I’ve got a selfie of me with a giant grin and Eric looking a bit confused.”) Psychologist professor Larry Rosen, co-author (with neuroscientist Adam Gazzaley) of The Distracted Mind: Ancient Brains in a High-Tech World, also agrees: “Constant distractions make it difficult to encode information in memory.”

Smartphones are, of course, made to hijack our attention. “The apps that make money by taking our attention are designed to interrupt us,” says Price. “I think of notifications as interruptions because that’s what they’re doing.”

For Oliver Hardt, phones exploit our biology. “A human is a very vulnerable animal and the only reason we are not extinct is that we have a superior brain: to avoid predation and find food, we have had to be really good at being attentive to our environment. Our attention can shift rapidly around and when it does, everything else that was being attended to stops, which is why we can’t multitask. When we focus on something, it’s a survival mechanism: you’re in the savannah or the jungle and you hear a branch cracking, you give your total attention to that – which is useful, it causes a short stress reaction, a slight arousal, and activates the sympathetic nervous system. It optimises your cognitive abilities and sets the body up for fighting or flighting.” But it’s much less useful now. “Now, 30,000 years later, we’re here with that exact brain” and every phone notification we hear is a twig snapping in the forest, “simulating what was important to what we were: a frightened little animal.”

Smartphone use can even change the brain, according to the ongoing ABCD study which is tracking over 10,000 American children through to adulthood. “It started by examining 10-year-olds both with paper and pencil measures and an MRI, and one of their most interesting early results was that there was a relationship between tech use and cortical thinning,” says Larry Rosen, who studies social media, technology and the brain. “Young children who use more tech had a thinner cortex, which is supposed to happen at an older age.” Cortical thinning is a normal part of growing up and then ageing, and in much later life can be associated with degenerative diseases such as Parkinson’s and Alzheimer’s, as well as migraines.

Obviously, the smartphone genie is out of the bottle and has run over the hills and far away. We need our smartphones to access offices, attend events, pay for travel and to function as tickets, passes and credit cards, as well as for emails, calls and messages. It’s very hard not to have one. If we’re worried about what they – or the apps on them – might be doing to our memories, what should we do?

Rosen discusses a number of tactics in his book. “My favourites are tech breaks,” he says, “where you start by doing whatever on your devices for one minute and then set an alarm for 15 minutes time. Silence your phone and place it upside down, but within your view as a stimulus to tell your brain that you will have another one-minute tech break after the 15-minute alarm. Continue until you adapt to 15 minutes focus time and then increase to 20. If you can get to 60 minutes of focus time with short tech breaks before and after, that’s a success.”

“If you think your memory and focus have got worse and you’re blaming things like your age, your job, or your kids, that might be true, but it’s also very likely due to the way you’re interacting with your devices,” says Price, who founded Screen/Life Balance to help people manage their phone use. As a science writer, she’s “very much into randomly controlled trials, but with phones, it’s actually more of a qualitative question about personally how it’s impacting you. And it’s really easy to do your own experiment and see if it makes a difference. It’s great to have scientific evidence. But we can also intuitively know: if you practice keeping your phone away more and you notice that you feel calmer and you’re remembering more, then you’ve answered your own question.”

Source link

Continue Reading

Trending

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates 
directly on your inbox.

You have Successfully Subscribed!